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Abstract. The simulations and comparisons between credibility models and several 
MCMC methods show that the fully Bayesian approach using MCMC method 
produce a smaller estimation errors and the ratio of standard error to estimated 
reserves than that of credibility model, which lead good results for the estimated 
reserves.    
 

1. Introduction 
 
For MCMC (Markov Chain Mote Carlao) simulations, the simple accessibility and 
wide applicability of the sampling based approach to Bayesian inference suggests 
the feasibility of a common purpose software for Bayesian analysis. Up to this view 
point, the user simply writes a short lines Gibbs or Metropolis-Hastings sampler 
code for the problem at hand, and modifies it to fit whatever subsequent problems 
come along. Users have also used that some high-standard languages (S-Plus, 
XLISP-STAT) which are convenient for the data entry, graphical convergence 
monitoring, and posterior summary statistics, while lower-level compiled 
languages(C or Fortran) are needed to facilitate the enormous amount of random 
generation and looping in the sampling procedure.  
 
The lower-level language is the more difficult one, since the computer has to be 
coded to understand a statistical model, or the prior and likelihood components, 
and make the necessary sampling distributions before sampling. These problems 
to overcome, a program has been developed and available via internet as freeware, 
i.e. BUGS (Bayesian inference Using Gibbs Sampling). This program is written by 
S-Plus-like syntax for specifying hierarchical model and developed by MRC 
Biostatistics Unit at the University of Cambridge.  
 
The program determines the full conditional distributions necessary for the Gibbs 
sampler and the non-explicit conditional distributions for the Metropolis-Hastings 
sampler by converting this syntax into an acyclic graph, the node of which 
correspond to the data and parameters in the model. Bugs successively samples 
from the parameter nodes, writing the output to a file for subsequent convergence 
assessment and posterior information. We estimate our model by Gibbs sampling 
and Metropolis-Hastings sampling using the Bugs software. In the description of 
Gibbs sampling, four procedures are required to implement a Gibbs sampling: 
 
1.1 Starting values must be provided for all unobserved nodes (parameters any 

missing data): 
 

In principle, the choice of the starting values is not important since Gibbs 
sampler and other MCMC methods should be run long enough for it to ignore 
its initial values. However very extreme starting values could cause to a long 
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“Burn-in” to sample. In unfortunate case, the sampler may fail to converge 
towards the posterior distribution, this possibility being aggravated by 
numerical instability in the extreme tails of the posterior. 
  

1.2 Full conditional distributions for each unobserved node must be constructed    
and methods for sampling from them decided upon: 
 
Gibbs sampling works by iteratively getting samples from the full conditional 
distribution for a node is the distribution of that node given current or known 
values for all other nodes. The full conditional distribution for the precision 
parameters can be easily worked out.  
 
A particularly useful application of the Metropolis-Hastings sampler is where 
an intractable density arises within a Gibbs sampler as the product of a 
standard density and another density, e.g. )()()( xxx φϕπ ⋅∝ , where 

)(xφ is a standard density that can be sampled. The general prescription 
shows us that the full conditional is proportional to the product of the prior, 
which can be taken from data, experience or aggregated information of 
industry and the likelihood terms. 

 
1.3 The output must be monitored to decide on the length of the “Burn-in” and 

the total run length, or perhaps to identify whether a more computationally 
efficient parameterization or other MCMC algorithm is required. 
 
The values for the unknown quantities generated by the Gibbs sampler can be 
graphically and statistically summarized to check. 
 

1.4 Summary statistics for quantities of interest must be calculated from the 
output, for inference about the true value of the unobserved nodes. 

        
1.5 Standard deviation in summary statistics shows the degree of fluctuation of       

simulations.  
 
2. Data of Mark (1996): Comparison among the 

Chain Ladder method, the De Vylder-Mack 
Credibility model and MCMC method using Gibbs 
sampler 

 
[Reserve estimating procedure] 
 
The overall approach to a reserve valuation problem can be broken into four 
phases. 
 
2.1 Review of the data to identify its key characteristics and possible bias. 

Balancing of the data to other verified sources should be undertaken at this 
point. 

 
2.2 Application of appropriate reserve estimation methods and selection of 

hyperparameters and its evaluation. 
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2.3 Evaluation of the conflicting results of the various reserve methods used, with 
an attempt to reconcile or explain the bases for different projections. At this 
point the proposed reserves are evaluated in contexts outside their original 
frame of analysis. 

 
2.4 Prepare projections of reserve development that can be monitored over the 

subsequent calendar periods. Deviation of actual from projected developments 
of counts or amounts is one of the most useful diagnostic tools in evaluating 
accuracy of reserve estimation: The typical measure of error is mean square 
error (MSE) 

                                     M.S.E. = nZZ ii
n

i
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      where  is actual claim amount and is estimated claim amount. iZ iẐ
 
2.5 The size of mean square error and the ratio of mean square error to estimated 

reserve can be index of “better fitted model”. 
 

The comparison among the Chain-Ladder, the credibility model and the MCMC 
method lies on different approaches. We introduce first the Chain Ladder method 
for the comparison of the Chain-Ladder method with credibility model. The second 
is that the basic model is equivalent to each other to compare between the 
credibility model the MCMC method. This means that the development effect can 
be directly comparable with each other.  
The Chain-ladder method produces somewhat different delay effect , which is 

not comparable with that of credibility model and the MCMC methods. In the 
credibility model, for instance, the development effect  can be directly obtained 

by the data if the expected value 

jf

ky

kiiiik ypXE )(]|[ θμθ =  is assumed (see section 

3.3 in this thesis and Mack: 1996, p235). The )( iθμ  plays an important role in 

the credibility model however )( iθμ  itself is not so well defined in the credibility 
model. The MCMC methods produce the delay effect and contain itself the 
procedure of the estimation of delay effect. 
 
The classical Chain Ladder method produces the final estimated amount, which 
can’t be comparable with estimated values by other models. But the stochastic 
Chain Ladder method by Mack (1993, 1994) can produce the standard error of the 
estimates, which help compare with other models. The original data set is given in 
the appendix. 
 
A. The Chain Ladder method: 
[Model and assumption] 
 
We assume that a run-off triangle is given, filled with cumulative loss figures , 

i.e.  is the total amount paid in year of origin i and in the following j years, on 

behalf of losses incurred in year of origin i..  The Chain Ladder method is a 
procedure to complete this triangle to a square, or eventually to estimate value 

, once is given. The basic assumption is that the columns in the triangle 

ijX

ijX

∞iX ∞0X
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are proportional, apart from random fluctuations. So if = 2 : 3, we must 

assume =  = = …….= 2 : 3, approximately.  

1413 : XX

2423 : XX 3433 : XX 4443 : XX
 
The assumptions imply that the run-off pattern over the development years is 
stable. So the method breaks down if the internal or external impacts cause a 
change in the run-off pattern.  
Now we introduce the stochastic Chain Ladder model. Let iJiiJ XXC ++= .......1  

in the multiplicative form 1,211 −⋅⋅⋅= JiiiiiJ FFFCC , where ijjiij CCF /1, += . 

Random variable  is independent of accident years i and its expected value can 

be expressed  by 

ijF
11,1,][ −≤≤≤≤= IjIifFE jij . 

 
1. jijijiji fCCCCE =+ ],......,|[ 11, , 

2.  Independence of accident years, 

3. , 2
11, ],......,|[ jijijiji CCCCVar σ=+

where  are estimated by Mack(1996) as follows: 2, jjf σ

∑ −

= +− ⋅++=
jI

i ijjijjIjijj CCCCCf
1 1,,1 /)../(ˆ , 

i.e. ; 1.59; 1.49; 1.18; 1.07; 1.05, respectively for this data and  51
ˆ;.......;ˆ ff

,)ˆ/()1/(1ˆ
1

2
1,

2 ∑ −

= + −⋅−−=
jI

k jkjjkkjj fCCCjIσ  

i.e. 51 ˆ;.......;ˆ σσ ; 12.95; 9.07; 7.03; 3.78; 2.03, respectively for this data, 

.  21 −≤≤ Jj
 
For j=i-1, Mack uses log linear regression to estimate  

))ˆ,ˆmin(,ˆmin(ˆ 2
2

2
3

4
2

2
1 −−−− = IIII σσσσ . 

Had , then we could have put = 0. 11 =−If 2
1−Iσ

Finally, the standard error, i.e. the square root of the mean square error consists of 
the statistical random error and estimation error: 
 

)()|)ˆ(()|)ˆ(()ˆ( 22
iIiIiIiii CMSEDCCEDRRERMSE =−=−= , 

where    iIiiIi CCR −+−= 1,

)1ˆ....ˆ(ˆ
111, −⋅⋅= −−+−+ IiIiIii ffCR , and  

}1|{ +≤+= IjiCD ij . 

 
MSE can be divided by two parts:  

 
2)ˆ)|(()|()ˆ()ˆ( iIiIiIiIi CDCEDCVarCMSERMSE −+== . 
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The following formulae are given for the mean square error of  
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The first two assumptions seem intuitively reasonable, and it is possible to 
demonstrate that they are consistent with chain ladder method more formally. The 
third assumption follows from the calculation of . A corollary of assumption 3 is 

that the development factor is not correlated.  
jf

 
So, for example, if the development factor is high in one period, it dose not follow 
that it should be not high (or low) in the next period. This will not always be 
reasonable: for example, if a company decides to change its claims handling 
procedure so that a large number of outstanding claims are settled in one 
development period, it is likely that the following period will have a low 
development case.  
 
The estimate of the Chain Ladder method, e.g. delay effect  can not be directly 

compared to that of the credibility model and MCMC method because the estimates 
in the Chain Ladder model is not comparable to that of the other models, i.e. the 
Chain-Ladder produces the delay effect  under different basis. But we can 

compare with the standard errors and the ratio of standard error to estimated 
reserve, which are produced by the Chain-Ladder, the credibility model and MCMC 
method.  

jf

jf

 
B. Credibility model: 
[Model and Assumptions] 
 
1. For each accident year  depend on unknown parameter iIi XX ,......,1 iθ , 

which is a variable for accident year factor.  
2. In each accident year i,  are independent. iIi XX ,......,1

3. The accident year vector (X, θ ) are independent i.e. independent of accident 
years. 

4. The iθ `s are identically distributed. 

5. The multiplicative assumption of development effect  and risk parameterky θ  
are given as follows: 
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 kiiiik ypXE )(]|[ θμθ = , where  is development effect and  is 
premium volume. 

ky ip

 
6. The variance assumption is given as follows:   

r
kiiiik ypXVar )(]|[ 2 θσθ = , where r=1 or 2. 

 
We define the structure parameters 
 

)]([ iEm θμ= , , )]([ 2
iEu θσ= )]([ iVarw θμ= , 

 with , 

, where . 
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The mean square error of estimation of  is calculated by development triangle iR
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This model was discussed in chapter 3 and the mean square of estimation of is 
produced by Mack(1996). The assumption 5, claim payment can be divided into 

iR

]|[]|[]|[ iikiikiik YENEXE θθθ ⋅= , with  is number of payments and  is 

average claim amount, where the premium volume is hidden in 

ikN ikY
]|[ ikikNE θ . We 

use r =1 for this model, and there is no significant difference between r =1 or 2 for 
this data by trials. 
 
C. Fully Bayesian approach using Gibbs sampler:  
 
The fully Bayesian approaches can be expressed as follows in comparison to 
credibility model. The assumptions are ascribed by the model We assume that all 

 conditionally independent and that ~ Normal(ijY ijY iθ , ss) for all i and j. The 

parameter iθ  denote the delay effect. Given a and cc, the iθ  are assume to be 

conditionally with iθ ~Normal(a, cc) for all i.  We complete this model by letting 
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a~gamma(#1, #2), cc~gamma(#3, #4) and ss~gamma(#5, #6). The next Normal-
Gamma model is performed by the same way. The selection of hyperparameters are 
discussed later. 
 
1. Normal-Normal  

Y[i, j] ~ norm(mu[i,j], ss) 
mu[i, j] = theta[ i]*P[ j]*X[ j] 

theta[i] ~ norm(a, cc) 
 

a  ~ gamma( #1 , #2 ) 
cc ~ gamma( #3 , #4 ) 
ss ~ gamma( #5 , #6 ) 

 
where theta[i] is development effect, P[j] is premium volume, X[j]                           
denotes inflation effect  and  #1,#2,#3,#4,#5,#6  denotes a prior. 

 
2. Normal-Gamma  

Y[i, j] ~ norm(mu[i,j], ss) 
mu[i, j] = theta[ i]*P[ j]*X[ j] 

theta[i] ~ gamma(a, cc) 
 

a  ~ gamma( #1 , #2 ) 
cc ~ gamma( #3 , #4 ) 
ss ~ gamma( #5 , #6 ) 

 
where theta[i] is  development effect, P[ j] is premium volume,  X[ j] denotes 
inflation effect  and   #1,#2,#3,#4,#5,#6  denotes a prior. 

 
The check of the results by selection of hyperparameters and calculation of 
estimates are discussed as follows: In the MCMC methods we need the information 
about parameter of a prior distribution. As mentioned in the section 2.4 in variance 
component model, the information about parameter of a prior distribution can be 
obtained from the variance components by the credibility model.  
 
For instance, in the Normal-Normal model a, cc and ss can be interpreted as the 
average of development effect, the variance of development effect and total variance 
according to accident years respectively. These a and ss correspond to E[ ] and 

, respectively in the previous credibility model. Therefore the 
variance components by credibility model or non-informative approach in Bayesian 
analysis by Jepperys(1961)give us the information about a prior. The non-
informative analysis in Bayesian approach without specific a prior takes more time 
than with specific a prior information.  

ky
)]([ 2

iEu θσ=

 
We first check the results by variations of hyperparameters in the model Normal-
Normal: 
 
a. a~(0.15, 1),  cc~(1000, 1),  ss~(1000, 0.1): This a prior is used in the next 

section for detail analysis and comparison among other models. 
Estimated IBNR reserve: 22,803 
Standard error: 4,346 
Estimated value a =0.1421,  ˆ
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Estimated value =976.8,  
∧

cc

Estimated value =1.042E-4.  
∧

ss
 

b. a~(2, 1),  cc~(500, 1),  ss~(500, 0.1)  
 

Estimated IBNR reserve: 22,824 
Standard error: 6,152 
Estimated value a =0.1458,  ˆ

Estimated value =489.7,  
∧

cc

Estimated value =5.243E-5.  
∧

ss
 
c. a~(1, 1),  cc~(100, 1),  ss~(100, 0.1) 

 
Estimated IBNR reserve: 22,792 
Standard error: 13,440 
Estimated value a =0.1423,  ˆ

Estimated value =100.0,  
∧

cc

Estimated value =1.109E-5.  
∧

ss
 
The results show us that the variations of hyperparameters realize a little 
difference in the dispersion of the estimated IBNS reserve. But the standard error 
is growing from 4,346 to 13, 440 rapidly. So the standard error is a measure of the 
selection of the models. Then we can choose parameter of a prior distribution using 
standard error.  Another measure of section can be considered e.g. the ratio of 
standard error to estimated reserves. An argument about the distribution of a prior 
arises.  
 
Whether a prior has normal distribution or gamma distribution, we don’t have 
such previous information. This argument is related with the degree of dispersion 
of density for a prior. Therefore first we have to simulate the models and then the 
standard errors can be compared with each other. The small standard errors of 
estimates have high probability against choosing the “bad fitted models”. We have 
another measure of “better fitted model”, i.e. the ratio of standard error to 
estimated reserves, which means the coefficient of variation in the statistical 
context. We use this measure also for the comparison and analysis. 
 
2.1. The comparison of procedure for the calculation  
 
First of all we have to check the assumptions for several models. The differences 
among models have to be detected how we can compare with each other directly or 
not. Although mathematical basis or some assumptions are not equivalent, i.e. the 
delay effect cannot compared directly, we can compare with the estimated reserves, 
standard error and the ratio of standard error to estimated reserves.  
The criterions for a better fitted model can be standard error and the ratio of 
standard error to estimated reserves. If new candidate model appears, then we can 
detect this procedure again and select the model.  
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The Chain-Ladder method cannot be compared directly with credibility model or 

MCMC methods, although it produces the delay effect and , i.e. 

, ;1.59; 1.49; 1.18; 1.07; 

1.05, respectively and 

jf 2
jσ

∑ −

= +− ⋅++=
jI

i ijjijjIjijj CCCCCf
1 1,,1 /)../(ˆ

51
ˆ;.......;ˆ ff

,)ˆ/()1/(1ˆ
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2
1,
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= + −⋅−−=
jI

k jkjjkkjj fCCCjIσ  

51 ˆ;.......;ˆ σσ ; 12.95; 9.07; 7.03; 3.78; 2.03 for this data.  Because the basis of 

assumption for  is different from that of credibility model and MCMC methods.  jf
 
Between credibility model and MCMC methods we can compare the delay effect 
each other, because these mathematical form are equivalent to each other, but the 
estimation methods are different. Although the delay effect cannot be compared 
with all methods, we can compare the estimated reserves, the standard error of 
estimates and the ratio of standard error to the estimated reserves, which is 
another measure of quality for the models. In the MCMC method the delay effect 
theta[i] can be produced by the model. We compare the credibility model and 
MCMC method in the delay effect(see [Figure 2.1]).  
 
The Chain-Ladder method cannot be compared with other models in the delay 
effect. Although it produce the delay effect , it is not comparable with that of 

credibility model and MCMC methods directly.  Because the basis of delay effect is 
different from each other. The data was modified by deflation factor in the original 
data set. Then we do not need to insert the inflation effect for the estimation. The 
values 

jf

)( iθμ , which are assumed to be 1 in the credibility model by Mack(1996, 
p.236), play  a main role in the credibility model. The MCMC method produces the 
delay effect and contains itself the procedure of the estimation of delay effect. In 
the MCMC method, we need only to calculate the fully Bayesian estimator using a 
prior information. The information for a prior in the MCMC method can be 
obtained either by the credibility model or by the non-informative analysis in 
Bayesian approach directly.       
   
Figure 2.1.  Comparison of the development effect 

Coefffi. Credibility model Coeffi. Normal-Normal Normal-Gamma 
y(1) 0.297 theta(1) 0.2977 0.2955 
y(2) 0.178 theta(2) 0.1792 0.1768 
y(3) 0.201 theta(3) 0.1979 0.1943 
y(4) 0.115 theta(4) 0.1119 0.1106 
y(5) 0.058 theta(5) 0.0221 0.0458 
y(6) 0.049 theta(6) 0.0541 0.0710  

 
2.2. The comparison of results for the calculations 
 
A. Estimations of the total IBNS amount by several models: 
 
The next figures in the table (See [Figure 2.2], [Graph 2.2] and [Graph 2.3]) show 
the differences of the estimated claim reserves and the standard error of estimates. 
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The MCMC methods do not need to calculate or to assume the ambiguous 
value )( iθμ  for the IBNS estimation. Without any ambiguous and superficial 
variable we can directly estimate several the IBNS reserve estimation and select a 
suitable model. These approaches have some advantages for the selection of 
models. Normally, the distribution of claim amount can be modeled by Normal-
Normal model corresponding to De Vylder-Mack credibility model. But in many 
cases, the density of claim payment and number of claims could have some other 
distributions. The MCMC method produces the trace of simulations (see 
Appendix),i.e. the estimated reserves, standard error and the acceptance rate in 
the  Metropolis-Hastings sampler. We have two results of MCMC methods, namely:  
Normal-Normal model and Normal-Gamma model. 
 
The MCMC models show relative small estimated IBNS reserve and standard errors, 
and the interval of estimated reserves moves between 22,803 (Norma-Normal 
model) and 25,573 (Normal-Gamma model), and the interval of standard errors 
shows 3,982(Normal-Gamma model) and 4,346(Normal-Normal model).  
 
All of the estimated reserve and standard errors by the MCMC models are smaller 
than that of the Chain Ladder method (the estimated reserve 28,430 and standard 
error 7,029) and the credibility model (the estimated reserve 26,291 and standard 
error 5,751). Finally we can conclude that the Normal-Gamma model is a better 
candidate because this model has moderate estimated reserves, which are neither 
so extremely larger nor so extremely small with small standard errors. So the ratio 
of standard error to the estimated reserves can be another measure for selecting of 
model. We discuss the measure in the next step. 
 
Figure 2.2. Comparison of the estimated reserves and standard errors 

 Chain-
Ladder 

Credibility 
model 

Normal-
Normal 

Normal-
Gamma 

Estimated reserves 28,430 26,291 22,803 25,573 
Standard Error 7,029 5,751 4,346 3,982 

 
Graph 2.1. Yearly estimated reserves and total estimated reserves 

Reserve

0
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20000
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Graph 2.2. Yearly standard error and total standard error 

Standard Error

0

2000

4000

6000

8000

1YR 2YR 3YR 4YR 5YR Sum

Chain-Ladder Credibility Normal-Normal Normal-Gamma

 
 
B. Calculation and comparison of standard error (mean square error): 
 
The results show that the Chain Ladder method and the credibility model have the 
large estimated reserves and standard errors in comparison with MCMC methods 
(The standard error, i.e. square root of mean square error consists of the statistical 
random error and estimation error.). The simulations and comparison among the 
Chain-ladder, credibility model and several MCMC methods show that the fully 
Bayesian approach using MCMC methods produces smaller standard errors and 
ratio of standard error to estimated reserve than that of credibility model.  We can 
compare the standard errors, which are produced by MCMC method. If the 
standard errors of all models are large, we can use the 105% or 110% percentile of 
standard error loaded loss reserves for conservative account, because MCMC 
methods can produce the percentile. In all models, we can choose a better 
candidate for the IBNS estimation. As mentioned, the Normal-Gamma model is a 
better candidate in the context of the standard error. But the standard error is not 
only a measure for selecting of model but the ratio of standard error to estimated 
reserve, i.e. the ratio is 0,19 for Normal-Normal model and 0,16 for Normal-Gamma 
model (see [Figure 2.3] and [Graph 2.3]). In this point of view, the Normal-Gamma 
model is definitely a better candidate model in these models.  
 
Figure 2.3. Yearly standard error and total standard error 
 

 Chain-
Ladder 

Credibility 
model 

Normal-
Normal 

Normal-
Gamma 

1 year 0.60 0.43 0.64 0.44 
2 year 0.43 0.30 0.55 0.32 
3 year 0.36 0.26 0.26 0.20 
4 year 0.20 0.19 0.14 0.12 
5 year 0.24 0.22 0.10 0.09 

Average 0.25 0.22 0.19 0.16 
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Graph 2.3. Yearly ratio of standard error to estimated reserves (A.V. means 
average) 

S.E./Reserve Ratio

0.00

0.20

0.40

0.60

0.80

1YR 2YR 3YR 4YR 5YR A.V.

Chain-Ladder Credibility Normal-Normal Normal-Gamma

 
 
3. Data of Hesselager (1991): Comparison among the 

Chain-Ladder method, Hesselager-Witting 
Credibility model and MCMC methods using Gibbs 
sampler and Metropolis-Hastings sampler    

 
A. Credibility model: Model and assumptions 
 
The analysis of Hesselager is performed by hierarchical credibility approach. We 
also perform such hierarchical model using MCMC methods. In the credibility 
model, the delay effect  and average claim payment ky kα  under the assumptions 

of the expected total claim amount kkhihihihik ypXE αθμθ )(]|[ =  and the 

expected claim number khihihihik ypNE )(]|[ θμθ = can be directly obtained by 

the data, where , , 

 and  (see Hesselager:1991, p35) and other assumptions 

are the same as the previous example. We perform to compare the credibility model 
with the MCMC methods, i.e. Normal-Gamma, Poisson-Gamma, Poisson-Gamma-
Normal model using Metropolis-Hastings sampler and Poisson-Gamma-Gamma 
model. These models show smaller size of estimation error than that of the 
credibility model. The ratio of standard error to the estimated reserves can be 
another measure of better candidate for the models. The data was modified by 
deflation factor in the data set. Then we do not need to insert the inflation effect for 
the estimation. The model selection is performed by the previous same procedure. 
The original data set is given in the appendix. The fully Bayesian approach can be 
expressed as follows: 

}/{}{ˆ
, ,
∑ ∑

∧

⋅=
ih ih

khihikk ypX μα ∑ ∑=
∧

ih ih
hihikk pNy
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k
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B. Fully Bayesian approach using the MCMC methods 
 
The Normal-Gamma model and the Poisson-Gamma model are assumed by the 
same way of the previous comparison. For the Poisson-Gamma-Gamma model we 
assume that all  conditionally independent and that ~ Poisson(ijY ijY ijμ ) for all i 

and j. The parameter iθ  denote the delay effect. Given a and cc, the iθ  are assume 

to be conditionally with iθ ~gamma( iη , cc) for all i given cc. The iη  are assumed to 

be conditionally with iη ~gamma(a, dd) given a and dd. The we complete this 
model by letting a~Normal(#1, #2), cc~gamma(#3, #4) and dd~gamma(#5, #6). The 
next Poisson-Gamma-Normal model is performed by the same assumption. It is of 
interest that the Poisson-Gamma-Normal model is performed by the Metropolis-
Hastings sampler because of the non-explicit density. 
 
3 

1. Normal-Gamma model via Gibbs sampler 
 

Y[i, j] ~ normal(mu[i,j],ss) 
mu[i, j] = theta[ i]*P[ j]*X[ j] 

theta[i] ~ gamma(a, cc) 
 

a  ~ gamma( #1 , #2 ) 
cc ~ gamma( #3 , #4 ) 
ss ~ gamma( #5 , #6 ) 

 
 where theta[i] is delay effect, P[ j] is premium volume, X[ j] denotes                          

inflation effect and #1,#2,#3,#4,#5,#6 denote a prior. 
 
2.  Poisson-Gamma model via Gibbs sampler 

 
Y[i, j] ~ pios(mu[i,j]) 

mu[i, j] = theta[ i]*P[ j]*X[ j] 
theta[i] ~ gamma(a, cc) 

 
a  ~ gamma( #1 , #2 ) 
cc ~ gamma( #3 , #4 ) 

 
 where theta[i] is delay effect, P[ j] is premium volume, X[ j] denotes inflation effect 

and #1,#2,#3,#4 denote a prior. 
 
3. Poisson-Gamma-Gamma model via Gibbs sampler 

 
Y[i, j] ~ pois(mu[i, j]) 

mu[i, j] = theta[ i]*P[ j]*X[ j] 
theta[i] ~ gamma(etha[i], cc) 

etha[i] ~  gamma(a,dd) 
 

a ~  norm(#1, #2) 
dd ~gamma(#3, #4) 
cc ~ gamma(#5, #6) 
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 where theta[i] is delay effect, P[ j] is premium volume, X[ j] denotes                              
inflation effect and #1,#2,#3,#4,#5,#6 denote a prior. 

 
4. Poisson-Gamma-Normal model via Metropolis-Hastings sampler 

 
Y[i, j] ~ pois(mu[i, j]) 

mu[i, j] = theta[ i]*P[ j]*X[ j] 
theta[i] ~ gamma(etha[i], cc) 

etha[i] ~  norm(a,dd) 
 

a ~  norm(#1, #2) 
dd ~gamma(#3, #4) 
cc ~ gamma(#5, #6) 

 
 where theta[i] is delay effect, P[ j] is premium volume, X[ j] denotes                                 

inflation effect and #1,#2,#3,#4,#5,#6 denote a prior. 
 
The check of  the results by selection of  hyperparameters and calculation of 
estimates are discussed the same method as before. We first check the results by 
variations of  hyperparameters in the model Normal-Gamma model: 
 
a. a~(40, 1),  cc~(1000, 1),  ss~(1000, 1): This a prior is used in the next section 

for detail analysis and comparison among other models. 
Estimated IBNR reserve: 12,452 
Standard error: 2,916 
Estimated value a =18.86,  ˆ

Estimated value =912.1,  
∧

cc

Estimated value =2.187E-4.  
∧

ss
 
 

b. a~(20, 1),  cc~(500, 1),  ss~(500, 1) 
Estimated IBNR reserve: 11,013 
Standard error: 3,345 
Estimated value a =0.2503,  ˆ

Estimated value =500.6,  
∧

cc

Estimated value =1.434E-4.  
∧

ss
 
 

c. a~(10, 1),  cc~(100, 1),  ss~(100, 1) 
Estimated IBNR reserve: 10,847 
Standard error: 7,155, 
Estimated value a =0.2835,  ˆ

Estimated value =101.1,  
∧

cc

Estimated value =3.119E-5.  
∧

ss
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3.1 The comparison of procedure for the calculations 
 
The results show us that the variations of hyperparameters realize some large 
difference between the dispersion of the estimated IBNS reserve. The standard 
errors grow from 1,239 to 2,916 rapidly, whereas the estimated IBNS reserves 
move from 10,891 to 12,146(See [Figure 3.1]). So the standard error and the ratio 
of standard error to estimated reserves could be measures for the selection of the 
models because small IBNS reserve and large standard error, i.e. the ratio of 
standard error to estimated reserves can be less fitted model. Using combination of 
a prior information under specific assumption for density, we can explore the new 
models.  
 
The delay effect can be produced by MCMC method and absolute value of delay 
effect is not equivalent and not comparable to the values of the delay effect in the 
credibility model directly because of the term i.e. average claim payment kα . 
However the relative delay effect can be comparable to delay effect of the credibility 
model. The coefficients of delay effect of MCMC methods have to be summed and 
be divided by each coefficient, e.g.  
 
0.09724/(0.09724+0.094+0.01884+0.00781+0.01083+0.00368+0.00172)=0.4153,  
0.09400/(0.09724+0.094+0.01884+0.00781+0.01083+0.00368+0.00172)=0.4045, 
.…, 
0.00172/(0.09724+0.094+0.01884+0.00781+0.01083+0.00368+0.00172)=0.0073.  
(see the below italic figure in the [Figure  3.1]).  
 
The other figures from Normal-Gamma, Poisson-Gamma-Normal, Poisson-Gamma-
Gamma model are obtained by the same way.  
 
Figure 3.1. The comparison of delay effect 
 

 Credibility 
model P-G N-G P-G-N P-G-G 

theta(1) 0.4070 0.4153 0.4045 0.4130 0.4162 

theta(2) 0.3894 0.4045 0.3937 0.4022 0.4051 

theta(3) 0.0857 0.0787 0.0768 0.0787 0.0787 

theta(4) 0.0396 0.0333 0.0343 0.0336 0.0331 

theta(5) 0.0561 0.0462 0.0463 0.0466 0.0460 

theta(6) 0.0164 0.0157 0.0225 0.0166 0.0151 

theta(7) 0.0057 0.0073 0.0219 0.0093 0.0060 
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Graph 3.1. Comparison among delay effects 

 
 
3.2  The comparison of  results for the calculations 
 
A. Estimation of the total IBNS amount by several models: 
 
We have four different results based on MCMC methods; Poisson-Gamma, Normal-
Gamma, Poisson-Gamma-Normal (via Metropolis-Hastings sampler), Poisson-
Gamma-Gamma model. These results give us some useful information about the 
estimated reserves and the estimation errors. As mentioned, these data are 
consisted of the claim numbers.  
 
This indicates that the hidden assumption for the distribution of claim number can 
be fitted well by the Poisson density. These results show that in general Poisson 
related models have small size of estimated reserves and standard errors in 
comparison to the credibility model and Normal-Gamma model. The MCMC models 
show relative small estimated IBNS reserve and standard errors, and the interval of 
estimated reserves move between 10,722 ~ 12,452 and the interval of standard 
errors show low 1,193 ~ 2,916 (See [Figure 3.2], [Graph 3.2] and [Graph 3.3]). All 
of the estimated reserve and errors by the MCMC models are smaller than that of 
the credibility model (the estimated reserve 12,146 and standard error 1,239). 
However, we cannot conclude which model a better candidate is, because these 
models have various estimated reserves and ratio of standard error to estimated 
reserves. We discuss the measure again in the next step. 
 
Figure 3.2. Comparison between the estimated reserves and standard errors 

 Credibility-
model N-G P-G P-G-G P-G-N 

Estimated reserves 12,146 12,452 10,891 10,722 11,135 

Standard Error 1,239 2,916 1,193 1,180 1,215 
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Graph 3.2. Yearly reserves and total reserve 
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Graph 3.3. Yearly standard error and total standard error 
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B. Definition and calculation of standard error (mean square error): 
 
The results show that the credibility model has the large estimated reserves and 
standard errors in comparison with MCMC methods. The simulations and 
comparison between credibility model and several MCMC methods show that the 
fully Bayesian approach using MCMC methods produces the smaller standard 
errors than that of credibility model. The Normal-Gamma model has too large size 
of standard errors in comparison to other models.  
 
We can choose more practicable and at the same time neither overestimated nor 
underestimated models, which give small size of the ratio of standard error to 
estimated reserves (see [Figure 3.3] and [Graph 3.3]). If we use only the credibility 
model, the risk of overestimation or underestimation cannot be avoided. Some 
models of MCMC methods give more information about the estimated reserves and 
standard errors. In all models, we can choose a better candidate model. The 
Poisson-Gamma model or Poisson-Gamma-Normal model can be better candidate 
according to the ratio of standard error to estimated reserves. For the conservative 
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IBNS strategy, we prefer to accept the Poisson-Gamma-Normal model rather than 
to accept Poisson-Gamma-Gamma model. It is of interest that the Normal-Gamma 
model is similar to the credibility model in the estimated reserve.  
 
Figure 2.3. Yearly standard error and total standard error 

Years N-G P-G P-G-G P-G-N 
1 year 1.12 1.14 1.73 1.15 
2 year 0.69 0.51 0.56 0.47 
3 year 0.40 0.20 0.21 0.20 
4 year 0.33 0.12 0.20 0.15 
5 year 0.24 0.10 0.12 0.10 
6 year 0.09 0.04 0.05 0.04 
Average 0.22 0.10 0.11 0.10 

 

Graph 3.4. Yearly ratio of standard error to estimated reserves (A.V. means 
Average) 
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4. The interpretation of procedure of claim reserve  
 
Loss reserves constitute the largest single item in an insurer’s balance sheet and 
especially in the line of liability business. An upward or downward 5-10% 
movement of loss reserves could change the whole financial picture of the company. 
We have argued for the use of stochastic models, especially in assessing the 
variability or uncertainty inherent in loss reserves. The loss reserve, which is 
carried in the balance sheet, will be realized in the future. Future paid losses may 
be regarded as a sample path from the estimated distributions.  
 
The estimated distributions include both statistical risk and estimation risk. The 
forecast distributions are accurate provided by the assumptions about the future. 
For example, if it is assumed that future inflation trend has a mean of 10% and a 
standard error of 2%, and in two years time it turns out that the inflation is 20%, 
then the forecast distributions are far form accurate. There are three main problem 
facing a major reserving exercise: Reserving a general class of business of 
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reasonably homogeneous characteristic; Reserving for a specific event or an 
individual (usually large) claim; Reserving for a ‘phenomenon’ (such as, for 
instance, mass tort claims, asbestos and pollution claims.) 
Fundamental to the reserving process is an understanding of the uncertain nature 
of the technical reserves and the establishment of a framework to monitor progress 
as claims become paid and as new reserves are established. 
The reserving process has the following principal stages. 

1. Establish the purpose of the exercise, in the term of reference given, the related 
department and other likely recipients of the results. 

2. Obtain background information and data sets for performing projections. This 
will include numerical data and objectives of the business. 

3. Analyze and check the data to identify any unusual features and reconcile the 
data to the published accounts or other reference points. 

4. Clarify points of detail on the data and, if necessary, obtain more extensive 
data.  

5. Perform projections, possibly using several reserving techniques, i.e. stochastic 
Chain-ladder method, credibility models, fully Bayesian approach using MCMC 
methods. 

6. Analyze and interpret the projection results and obtain feedback from related 
department. 

7. Finalize the projections and document the calculations and rationale for 
making specific assumptions, paying particular attention to the more 
subjective areas. 

   
The wide range of contingencies that can give rise to claims, and the influence that 
factors beyond the insurer’s control (such as taxes, social inflation, legislative 
charges) have upon claims, means that ultimate level of claims can never be known 
with certainty until the last claim has been finally settled. The error that reserve 
estimates are subject to can be thought of in three principal components. 
 
1. Statistical error: Claims might, on average, be distributed by amount and 

through time according to some well-defined pattern or structure. However, 
since they are inherently variable, it might possible to express their ultimate 
level in terms of statistical random error of the underlying distribution. 

 
2. Estimation error: Since policy terms and conditions cannot, in practice, restrict 

the behavior of claims to predefined distributions, the estimation of the 
parameters of the distribution is itself subject to estimation error. 

 
3. Model error: In describing the above error components it is implicitly assumed 

that, through some process of prior information, the general structure of 
claims development is known (for example, some models assume that 
incremental payments in respect of a particular underwriting cohort follow a 
log normal pattern). However there is no guarantee that a selected model is 
fundamentally the correct one. 

  
Accordingly, any prediction interval computed from the forecast distributions is 
conditional on the assumptions about the future remaining true. By MCMC 
methods we can implement easily the inflation effect in the model and moreover we 
can produce the percentile loaded reserve against such trends (for instance, 105-
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110% of the estimated reserve). The uncertainty in loss reserves for the future 
should be based on a stochastic model that may bear relationship to reserves 
carried by the company in the past.  
The uncertainty for each line for each company should be based on a stochastic 
model, derived from the company’s experience. A model appropriate for one loss 
development trend will not be appropriate for another. 
 
5. Conclusion 
 
We considered the problem of predicting unpaid losses but not yet reported claims 
with some credibility models and MCMC methods. The main aim of this thesis is to 
develop a stochastic macro models. These models are divided into three categories 
in this thesis. The first models are related with credibility model: variance 
component model and unconditional credibility model. The second models are 
cross-classification model with credibility estimator and without credibility 
estimators. The third models are exact Bayesian model and fully Bayesian model 
using MCMC methods. 
 
For the IBNR estimation, we can make some useful check points. This check points 
allow us choose which model is more reasonable, acceptable and predictable: 

1. Check that all the assumption contained in the model is satisfied by the data. 

2. Calculate the estimated reserves and standard errors of estimates. 

3. Easily update models and track forecasts as new data arrive. 
 
The apparent profitability and solvency of a business is highly dependent upon the 
reserve level and the reserving philosophy. Most of the key financial performance 
statistics used by insurance company analysts depends in some way upon the 
reserve level. Reserving is therefore a fundamental aspect of business management. 
The insights that the reserving process provides into past claim performance and 
policy exposures can influence the terms and conditions offered on future business 
and are usually the basis of decisions to cease underwriting certain classes or to 
withdraw from insurance entirely and support alternative enterprises that are 
expected to offer better rates of return on capital.    
 
Some models have to satisfy the assumptions, simplicity, acceptability and so on. 
But in the credibility model we need some assumptions, which can lead sometimes 
meaningless and artificial by real data. By fully Bayesian approach we can 
calculate directly the estimates from the data without such assumptions of 
credibility. 
 
In the meaning of this criterion e.g. simplicity, acceptability, we can compare the 
credibility models with the fully Bayesian approaches. The credibility models for 
ratemaking have the same structure as the credibility model for IBNS estimation, 
which is linear Bayesian estimation. The unknown parameter )(θμ  involves the 
whole structure of estimation in the credibility model. When some assumptions are 
violated, we can choose some alternative models. The MCMC estimation procedure 
is developed which efficiently generates the posterior joint of the parameters and 
regimes. The complete likelihood function is generated at the same time, enabling 
estimation of  posterior probabilities for use in model selection. The procedure can 
readily be extended to produce joint prediction densities for the variables, 
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incorporating both parameter and model. If the full conditional distribution exists 
explicitly, the Gibbs sampler produces the posterior distribution. The Gibbs 
sampler will often be useful where a complicated process can be built up from the 
components with standard conditional distribution. A particularly useful 
application of the Metropolis-Hastings sampler is where an intractable density 
arises within a Gibbs sampler as the product of a standard density and another 
density, e.g. )()()( xxx φϕπ ⋅∝ , where )(xφ is a standard density that can be 
sampled. Fully Bayesian approaches via MCMC method, which are a kind of exact 
Bayesian estimation using simulation, produce many advantages: 
 
1. Fully Bayesian approaches can be easily inserted and used the information of 

the premium volume or number of policies.  
 
2. The inflation effect can be inserted and analyzed without any manipulations 

for the undeflated original data. 
 
3. The models can be selected by the estimated reserves and the ratio of standard 

error to estimated reserves. 
 
4. If the estimation errors are large, we can use the 105% or 110% percentile 

loaded loss reserves for conservative reserving policy, which MCMC methods 
can produce. 

 
The simulations and comparisons between credibility models and several MCMC 
methods show that the fully Bayesian approach using MCMC method produce a 
smaller estimation errors and the ratio of standard error to estimated reserves than 
that of credibility model, which lead good results for the estimated reserves.    
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